Karamba3D v1.3.3
Chinese 中文
Chinese 中文
  • 欢迎来到Karamba3D
  • 1: 绪论
    • 1.1: 安装
    • 1.2: 使用授权许可
      • 1.2.1: 独立使用授权许可
      • 1.2.2: 网络使用授权许可
      • 1.2.3: 临时使用授权许可
      • 1.2.4: 云端使用授权许可
  • 2: 入门
    • 2: 入门
      • 2.1: Karamba3D实体
      • 2.2: 建立结构分析
        • 2.2.1: 定义模型元素
        • 2.2.2: 模型显示
        • 2.2.3: 添加支撑件
        • 2.2.4: 定义荷载
        • 2.2.5: 算法选择
        • 2.2.6: 提供断面 – 或使用默认值
        • 2.2.7: 定义材料
        • 2.2.8: 检索结果
      • 2.3: 物理单位
      • 2.4: 运算器速览
  • 3: 运算器详解
    • 3.1: 模型 (Model)
      • 3.1.1: 模型构建 (Assemble)
      • 3.1.2: 分解模型 (Disassemble Model)
      • 3.1.3: 编辑模型 (Modify Model)
      • 3.1.4: 连接构件 (Connected Parts)
      • 3.1.5: 激活元素 (Activate Element)
      • 3.1.6: 由线到梁 Line To Beam
      • 3.1.7: 与梁的连接 (Connectivity to Beam)
      • 3.1.8: 由索引到梁 (Index to Beam)
      • 3.1.9: 由网格面到壳体 (Mesh to Shell)
      • 3.1.10: 编辑元素 (Modify Element)
      • 3.1.11: 点-质量 (Point-Mass)
      • 3.1.12: 分解元素 (Disassemble Element)
      • 3.1.13: 创建梁的集合 (Make Beam-Set) 🔷
      • 3.1.14: 定位元素 (Orientate Element)
      • 3.1.15: 选择梁 (Select Element)
      • 3.1.16: 支撑件 (Support)
    • 3.2: 荷载 (Load)
      • 3.2.1: 荷载 (Loads)
      • 3.2.2: 分解网格荷载 (Disassemble Mesh Load)
      • 3.2.3: 规定位移 (Prescribed displacements)
    • 3.3: 断面 (Cross Section)
      • 3.3.1: 梁的断面 (Beam Cross Sections)
      • 3.3.2: 壳体断面 (Shell Cross Sections)
      • 3.3.3: 弹性元件断面 (Spring Cross Sections)
      • 3.3.4: 分解断面 (Disassemble Cross Section) 🔷
      • 3.3.5: 梁-连接件 (Beam-Joint Agent) 🔷
      • 3.3.6: 梁-铰链 (Beam-Joints) 🔷
      • 3.3.7: 梁上偏心率、断面偏心率 (Eccentricity on Beam and Cross Section) 🔷
      • 3.3.8: 编辑断面 (Modify Cross Section) 🔷
      • 3.3.9: 断面范围选择器 (Cross Section Range Selector)
      • 3.3.10: 断面选择器 (Cross Section Selector)
      • 3.3.11: 断面匹配器 (Cross Section Matcher)
      • 3.3.12: 生成断面信息表格 (Generate Cross Section Table)
      • 3.3.13: 从文件中读取断面信息表格(Read Cross Section Table from File)
    • 3.4: 材料 (Material)
      • 3.4.1: 材料属性 (Material Properties)
      • 3.4.2: 选择材料 (Material Selection)
      • 3.4.3: 从文件中读取材料列表 (Read Material Table from File)
      • 3.4.4: 分解材料 (Disassemble Material) 🔷
    • 3.5: 算法 (Algorithms)
      • 3.5.1: 分析 (Analyze)
      • 3.5.2: 分析原理II (AnalyzeThII) 🔷
      • 3.5.3: 分析非线性WIP (Analyze Nonlinear WIP)
      • 3.5.4: 大变形分析 (Large Deformation Analysis)
      • 3.5.5: 屈曲模式 (Buckling Modes) 🔷
      • 3.5.6: 本征模 (Eigen Modes)
      • 3.5.7: 自然振动 (Natural Vibrations)
      • 3.5.8: 优化横截面 (Optimize Cross Section) 🔷
      • 3.5.9: 梁的双向渐进结构优化 (BESO for Beams)
      • 3.5.10: 壳体的双向渐进结构优化 (BESO for Shells)
      • 3.5.11: 优化补强加固 (Optimize Reinforcement) 🔷
      • 3.5.12: 张力/压力消除器 (Tension/Compression Eliminator) 🔷
    • 3.6: 结果
      • 3.6.1: 模型视图 (ModelView)
      • 3.6.2: 变形能量 (Deformation-Energy)
      • 3.6.3: 节点位移 (Nodal Displacements)
      • 3.6.4: 主应变近似值 (Principal Strains Approximation)
      • 3.6.5: 反作用力 (Reaction Forces) 🔷
      • 3.6.6: 元件利用率 (Utilization of Elements) 🔷
      • 3.6.7: 梁视图 (BeamView)
      • 3.6.8: 梁的位移 (Beam Displacements) 🔷
      • 3.6.9: 梁的作用力 (Beam Forces)
      • 3.6.10: 合成截面力 (Resultant Section Forces)
      • 3.6.11: 壳体视图 (ShellView)
      • 3.6.12: 壳体上的线结果 (Line Results on Shells)
      • 3.6.13: 壳体上的结果向量 (Result Vectors on Shells)
      • 3.6.14: 壳体作用力 (Shell Forces)
    • 3.7: 输出 (Export) 🔷
      • 3.7.1: 输出模型至DStV (Export Model to DStV) 🔷
    • 3.8 实用程序 (Utilities)
      • 3.8.1: 网格边界表示 (Mesh Breps)
      • 3.8.2: 最近点 (Closest Points)
      • 3.8.3: 多维最近点 (Closest Points Multi-dimensional)
      • 3.8.4: 剔除曲线 (Cull Curves)
      • 3.8.5: 碰撞检测 (Detect Collisions)
      • 3.8.6: 从线中获取单元格 (Get Cells from Lines)
      • 3.8.7: 线-线相交 (Line-Line Intersection)
      • 3.8.8: 主要状态转型 (Principal States Transformation) 🔷
      • 3.8.9: 重复线删除 (Remove Duplicate Lines)
      • 3.8.10: 重复点删除 (Remove Duplicate Points)
      • 3.8.11: 简化模型 (Simplify Model)
      • 3.8.12: 元素毡化 (Element Felting) 🔷
      • 3.8.13: 映射器 (Mapper) 🔷
      • 3.8.14: 插值形状 (Interpolate Shape) 🔷
      • 3.8.15: 借助缝合连接梁 (Connecting Beams with Stitches) 🔷
      • 3.8.16: 用户等参线和流线 (User Iso-Lines and Stream-Lines)
  • 疑难解答
    • 4.1: 其他问题
      • 4.1.1: 安装问题
      • 4.1.2: 购买程序
      • 4.1.3: 获取使用授权许可
      • 4.1.4: 运行错误
      • 4.1.5: 定义与运算器
      • 4.1.6: 默认程序设置
    • 4.2: 技术支持
  • 附件
    • A.1: 发行说明
    • A.2: 背景资料
      • A.2.1: 材料的基本性能
      • A.2.2: 有关荷载的附加信息
      • A.2.3: 设计静态可行性结构的技巧
      • A.2.4: 减少运算时间的技巧
      • A.2.5: 自然振动、本征模和屈曲
      • A.2.6: 用于断面优化的方法
    • A.3: 参考书目
Powered by GitBook
On this page
  • 材料刚度
  • 表A.2.1.1列出了一些常用建筑材料的E值。
  • 特定的重量
  • 刚度、应力和应变的理论背景

Was this helpful?

  1. 附件
  2. A.2: 背景资料

A.2.1: 材料的基本性能

PreviousA.2: 背景资料NextA.2.2: 有关荷载的附加信息

Last updated 4 years ago

Was this helpful?

材料刚度

刚度,即材料抗变形的能力,以其杨氏模量或弹性模量“E”为特征。其值越高,材料越硬。

表A.2.1.1列出了一些常用建筑材料的E值。

材料类型

钢材

21000

铝材

7000

钢筋混凝土

3000

玻璃纤维

7000

木材(云杉)

1000

对于复合材料(例如:由玻璃纤维和环氧树脂制成的杆件),有必要使用材料测试来延迟执行E的平均值。Karamba3D 所需要的E值输入以(kN/cm2kN/cm^2kN/cm2千牛顿/平方厘米)为单位。

如果拉伸一块材料,它不仅会变长而且会变薄:它会横向收缩。以钢材为例,其横向应变等于纵向应变的30%。如果梁的横截面高度与跨度的比例较大,则会影响位移响应。

然而,在普通的梁结构中,这种影响并不是非常重要。剪切模量“G”描述了这方面的材料性能。

特定的重量

“gamma(伽马)”值单位预计为(kN/cm3kN/cm^3kN/cm3千牛顿每立方米)。这是每单位体积所受的力。由于地球重力加速度(a=g=9.81kgm/s2a=g=9.81 kg m/s^2a=g=9.81kgm/s2),根据牛顿定律(f=m⋅af=m \cdot af=m⋅a),质量为1千克的m其向下作用力为f=9.81Nf=9.81Nf=9.81N。为计算结构的挠度,假定f=10Nf=10Nf=10N的值足够精确。如需获得更为精确的值,请更改文件中的“gravity(重力)”条目。如使用英制单位,程序会自动设置“重力(gravity)”的精确值,否则,从lbm到lbf的转换将无法正常进行。

表格A.2.1.1给出了许多典型建筑材料的比重。只有当在荷载上施加重力时,材料的重量才会生效(请参阅第节)。

刚度、应力和应变的理论背景

“E”代表杨氏模量,它取决于材料并描述其刚度。胡克定律表明,变形越多,施加的作用力就越大。

应变是材料加载时长度的增加与其初始长度之间的商。通常用希腊字母εεε表示应变。应力是单位面积上力的集度。根据梁截面的应力,可以通过将截面上每个点的面积与应力的乘积相加(积分)来计算梁承受的法向力。压力通常用希腊字母σσσ表示。线性弹性材料在应力和应变之间显示出线性关系。该关系被称为胡克定律,其表达式如下:

σ=E⋅εσ = E \cdot εσ=E⋅ε

E[kN/cm2]E [kN/cm^2]E[kN/cm2]
“karamba.ini”
3.2.1