Karamba3D v1.3.3
Chinese 中文
Chinese 中文
  • 欢迎来到Karamba3D
  • 1: 绪论
    • 1.1: 安装
    • 1.2: 使用授权许可
      • 1.2.1: 独立使用授权许可
      • 1.2.2: 网络使用授权许可
      • 1.2.3: 临时使用授权许可
      • 1.2.4: 云端使用授权许可
  • 2: 入门
    • 2: 入门
      • 2.1: Karamba3D实体
      • 2.2: 建立结构分析
        • 2.2.1: 定义模型元素
        • 2.2.2: 模型显示
        • 2.2.3: 添加支撑件
        • 2.2.4: 定义荷载
        • 2.2.5: 算法选择
        • 2.2.6: 提供断面 – 或使用默认值
        • 2.2.7: 定义材料
        • 2.2.8: 检索结果
      • 2.3: 物理单位
      • 2.4: 运算器速览
  • 3: 运算器详解
    • 3.1: 模型 (Model)
      • 3.1.1: 模型构建 (Assemble)
      • 3.1.2: 分解模型 (Disassemble Model)
      • 3.1.3: 编辑模型 (Modify Model)
      • 3.1.4: 连接构件 (Connected Parts)
      • 3.1.5: 激活元素 (Activate Element)
      • 3.1.6: 由线到梁 Line To Beam
      • 3.1.7: 与梁的连接 (Connectivity to Beam)
      • 3.1.8: 由索引到梁 (Index to Beam)
      • 3.1.9: 由网格面到壳体 (Mesh to Shell)
      • 3.1.10: 编辑元素 (Modify Element)
      • 3.1.11: 点-质量 (Point-Mass)
      • 3.1.12: 分解元素 (Disassemble Element)
      • 3.1.13: 创建梁的集合 (Make Beam-Set) 🔷
      • 3.1.14: 定位元素 (Orientate Element)
      • 3.1.15: 选择梁 (Select Element)
      • 3.1.16: 支撑件 (Support)
    • 3.2: 荷载 (Load)
      • 3.2.1: 荷载 (Loads)
      • 3.2.2: 分解网格荷载 (Disassemble Mesh Load)
      • 3.2.3: 规定位移 (Prescribed displacements)
    • 3.3: 断面 (Cross Section)
      • 3.3.1: 梁的断面 (Beam Cross Sections)
      • 3.3.2: 壳体断面 (Shell Cross Sections)
      • 3.3.3: 弹性元件断面 (Spring Cross Sections)
      • 3.3.4: 分解断面 (Disassemble Cross Section) 🔷
      • 3.3.5: 梁-连接件 (Beam-Joint Agent) 🔷
      • 3.3.6: 梁-铰链 (Beam-Joints) 🔷
      • 3.3.7: 梁上偏心率、断面偏心率 (Eccentricity on Beam and Cross Section) 🔷
      • 3.3.8: 编辑断面 (Modify Cross Section) 🔷
      • 3.3.9: 断面范围选择器 (Cross Section Range Selector)
      • 3.3.10: 断面选择器 (Cross Section Selector)
      • 3.3.11: 断面匹配器 (Cross Section Matcher)
      • 3.3.12: 生成断面信息表格 (Generate Cross Section Table)
      • 3.3.13: 从文件中读取断面信息表格(Read Cross Section Table from File)
    • 3.4: 材料 (Material)
      • 3.4.1: 材料属性 (Material Properties)
      • 3.4.2: 选择材料 (Material Selection)
      • 3.4.3: 从文件中读取材料列表 (Read Material Table from File)
      • 3.4.4: 分解材料 (Disassemble Material) 🔷
    • 3.5: 算法 (Algorithms)
      • 3.5.1: 分析 (Analyze)
      • 3.5.2: 分析原理II (AnalyzeThII) 🔷
      • 3.5.3: 分析非线性WIP (Analyze Nonlinear WIP)
      • 3.5.4: 大变形分析 (Large Deformation Analysis)
      • 3.5.5: 屈曲模式 (Buckling Modes) 🔷
      • 3.5.6: 本征模 (Eigen Modes)
      • 3.5.7: 自然振动 (Natural Vibrations)
      • 3.5.8: 优化横截面 (Optimize Cross Section) 🔷
      • 3.5.9: 梁的双向渐进结构优化 (BESO for Beams)
      • 3.5.10: 壳体的双向渐进结构优化 (BESO for Shells)
      • 3.5.11: 优化补强加固 (Optimize Reinforcement) 🔷
      • 3.5.12: 张力/压力消除器 (Tension/Compression Eliminator) 🔷
    • 3.6: 结果
      • 3.6.1: 模型视图 (ModelView)
      • 3.6.2: 变形能量 (Deformation-Energy)
      • 3.6.3: 节点位移 (Nodal Displacements)
      • 3.6.4: 主应变近似值 (Principal Strains Approximation)
      • 3.6.5: 反作用力 (Reaction Forces) 🔷
      • 3.6.6: 元件利用率 (Utilization of Elements) 🔷
      • 3.6.7: 梁视图 (BeamView)
      • 3.6.8: 梁的位移 (Beam Displacements) 🔷
      • 3.6.9: 梁的作用力 (Beam Forces)
      • 3.6.10: 合成截面力 (Resultant Section Forces)
      • 3.6.11: 壳体视图 (ShellView)
      • 3.6.12: 壳体上的线结果 (Line Results on Shells)
      • 3.6.13: 壳体上的结果向量 (Result Vectors on Shells)
      • 3.6.14: 壳体作用力 (Shell Forces)
    • 3.7: 输出 (Export) 🔷
      • 3.7.1: 输出模型至DStV (Export Model to DStV) 🔷
    • 3.8 实用程序 (Utilities)
      • 3.8.1: 网格边界表示 (Mesh Breps)
      • 3.8.2: 最近点 (Closest Points)
      • 3.8.3: 多维最近点 (Closest Points Multi-dimensional)
      • 3.8.4: 剔除曲线 (Cull Curves)
      • 3.8.5: 碰撞检测 (Detect Collisions)
      • 3.8.6: 从线中获取单元格 (Get Cells from Lines)
      • 3.8.7: 线-线相交 (Line-Line Intersection)
      • 3.8.8: 主要状态转型 (Principal States Transformation) 🔷
      • 3.8.9: 重复线删除 (Remove Duplicate Lines)
      • 3.8.10: 重复点删除 (Remove Duplicate Points)
      • 3.8.11: 简化模型 (Simplify Model)
      • 3.8.12: 元素毡化 (Element Felting) 🔷
      • 3.8.13: 映射器 (Mapper) 🔷
      • 3.8.14: 插值形状 (Interpolate Shape) 🔷
      • 3.8.15: 借助缝合连接梁 (Connecting Beams with Stitches) 🔷
      • 3.8.16: 用户等参线和流线 (User Iso-Lines and Stream-Lines)
  • 疑难解答
    • 4.1: 其他问题
      • 4.1.1: 安装问题
      • 4.1.2: 购买程序
      • 4.1.3: 获取使用授权许可
      • 4.1.4: 运行错误
      • 4.1.5: 定义与运算器
      • 4.1.6: 默认程序设置
    • 4.2: 技术支持
  • 附件
    • A.1: 发行说明
    • A.2: 背景资料
      • A.2.1: 材料的基本性能
      • A.2.2: 有关荷载的附加信息
      • A.2.3: 设计静态可行性结构的技巧
      • A.2.4: 减少运算时间的技巧
      • A.2.5: 自然振动、本征模和屈曲
      • A.2.6: 用于断面优化的方法
    • A.3: 参考书目
Powered by GitBook
On this page

Was this helpful?

  1. 3: 运算器详解
  2. 3.8 实用程序 (Utilities)

3.8.13: 映射器 (Mapper) 🔷

Previous3.8.12: 元素毡化 (Element Felting) 🔷Next3.8.14: 插值形状 (Interpolate Shape) 🔷

Last updated 4 years ago

Was this helpful?

“Mapper(映射器)”是采用Karamba3D模型并根据用户提供的参数,依据映射定义的一些通用规则对其进行修改的运算器。它直接作用于模型,因此省去了将Grasshopper几何图形转换为Karamba3D模型的过程。例如,当利用Galapagos进行优化任务运算时,速度上的提升很重要。 图3.8.13.1显示了一个定义,其中映射器在给定的模型上运用了一个名为“Simple Stitch(简单针迹)”的映射,该映射最初由两个元素组成:“A”和“B”。在这种情况下,由一个映射将两个梁的集合与位置由给定映射器参数控制的元素进行连接。

输入端口“Params(参数)”接收两个参数。在“Simple Stitch(简单针迹)”映射的背景下,这些参数给出了应引入的连接“C”在两个梁的组合“A”和“B”上的相对位置。因此,映射封装了一个操作,并由映射器将其激活。目前,Karamba3D提供的映射主要用于通过被称为“stitching(缝合)”的运算方式来连接现有梁的集合。这个概念源自将布连接在一起的类比。这些映射将在下文进一步阐述。它们源于在维也纳应用艺术大学的科研项目“”。

Algorithmic Generation of Complex Space Frames
(复杂空间框架的算法生成)
图3.8.13.1:Mapper(映射器)”运算器将映射应用于给定模型。