Karamba3D v1.3.3
English 英文
English 英文
  • Welcome to Karamba3D
  • 1: Introduction
    • 1.1: Installation
    • 1.2: Licenses
      • 1.2.1: Cloud Licenses
      • 1.2.2: Network Licenses
        • 1.2.2.1: Network license (archived)
      • 1.2.3: Temporary Licenses
      • 1.2.4: Standalone Licenses
  • 2: Getting Started
    • 2: Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set 🔷
      • 3.1.14: Orientate Element
      • 3.1.15: Select Element
      • 3.1.16: Support
    • 3.2: Load
      • 3.2.1: Loads
      • 3.2.2: Disassemble Mesh Load
      • 3.2.3: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section 🔷
      • 3.3.5: Beam-Joint Agent 🔷
      • 3.3.6: Beam-Joints 🔷
      • 3.3.7: Eccentricity on Beam and Cross Section 🔷
      • 3.3.8: Modify Cross Section 🔷
      • 3.3.9: Cross Section Range Selector
      • 3.3.10: Cross Section Selector
      • 3.3.11: Cross Section Matcher
      • 3.3.12: Generate Cross Section Table
      • 3.3.13: Read Cross Section Table from File
    • 3.4: Material
      • 3.4.1: Material Properties
      • 3.4.2: Material Selection
      • 3.4.3: Read Material Table from File
      • 3.4.4: Disassemble Material 🔷
    • 3.5: Algorithms
      • 3.5.1: Analyze
      • 3.5.2: AnalyzeThII 🔷
      • 3.5.3: Analyze Nonlinear WIP
      • 3.5.4: Large Deformation Analysis
      • 3.5.5: Buckling Modes 🔷
      • 3.5.6: Eigen Modes
      • 3.5.7: Natural Vibrations
      • 3.5.8: Optimize Cross Section 🔷
      • 3.5.9: BESO for Beams
      • 3.5.10: BESO for Shells
      • 3.5.11: Optimize Reinforcement 🔷
      • 3.5.12: Tension/Compression Eliminator 🔷
    • 3.6: Results
      • 3.6.1: ModelView
      • 3.6.2: Deformation-Energy
      • 3.6.3: Nodal Displacements
      • 3.6.4: Principal Strains Approximation
      • 3.6.5: Reaction Forces 🔷
      • 3.6.6: Utilization of Elements 🔷
      • 3.6.7: BeamView
      • 3.6.8: Beam Displacements 🔷
      • 3.6.9: Beam Forces
      • 3.6.10: Resultant Section Forces
      • 3.6.11: ShellView
      • 3.6.12: Line Results on Shells
      • 3.6.13: Result Vectors on Shells
      • 3.6.14: Shell Forces
    • 3.7: Export 🔷
      • 3.7.1: Export Model to DStV 🔷
    • 3.8 Utilities
      • 3.8.1: Mesh Breps
      • 3.8.2: Closest Points
      • 3.8.3: Closest Points Multi-dimensional
      • 3.8.4: Cull Curves
      • 3.8.5: Detect Collisions
      • 3.8.6: Get Cells from Lines
      • 3.8.7: Line-Line Intersection
      • 3.8.8: Principal States Transformation 🔷
      • 3.8.9: Remove Duplicate Lines
      • 3.8.10: Remove Duplicate Points
      • 3.8.11: Simplify Model
      • 3.8.12: Element Felting 🔷
      • 3.8.13: Mapper 🔷
      • 3.8.14: Interpolate Shape 🔷
      • 3.8.15: Connecting Beams with Stitches 🔷
      • 3.8.16: User Iso-Lines and Stream-Lines
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. 2: Getting Started
  2. 2: Getting Started

2.3: Physical Units

Previous2.2.8: Retrieve ResultsNext2.4: Quick Component Reference

Last updated 4 years ago

Was this helpful?

On installing Karamba3D one can specify the family of physical units to be used for input and results. The default option is metric (e.g. meters, centimeters, degree Celsius, Newtons, …) but Karamba3D can also deal with Imperial units (e.g. feet, inch, degree Fahrenheit, kiloponds, …).

The set of units to be used can be changed any time by editing the file.

Depending on the family of units Karamba3D interprets geometric input either as meters or feet. The kind of physical units that components expect to receive shows up in the tool-tip which appears when the mouse pointer hovers over an input-plug.

Changing the type of physical units during the creation of a GH definition may give rise to problems: The help text of Grasshopper components does not change dynamically. Switching from SI to Imperial Units leaves the help text of those components already placed on the canvas unaltered. The interpretation of the input values however changes. Opening a GH definition with a Karamba3D versions with differently set physical units entails the same problem.

Karamba3D comes with databases for predefined cross sections and materials. The properties there are given in SI units. The same applies to physical constants (e.g. “gravity”) defined in the “karamba.ini”-file.

Throughout the rest of this manual SI units will be used exclusively in order to ensure good readability. When specific differences exist between using Karamba3D with Imperial Units and SI units, this will be mentioned in the text.

“karamba.ini”