The range of problems which can be tackled using the dynamic relaxation (DR) algorithm as implemented in Karamba3D is limited to stable structures. In case of phenomena like buckling or snap-through, equilibrium states may exist beyond the point of initial instability. They are however hard to reach due to their often large distance from the last known stable configuration. In such a case the DR-algorithm does not converge to an equilibrium state within the maximum number of equilibrium iterations. It then tries to close in on the point of assumed instability by halving the load-increment which led to divergence. By proceeding in this manner, the so called limit load can be determined with arbitrary precision. βmaxLimitIterβ sets an upper limit on the number of limit-load-iterations which is equal to 200 by default. Sadly, divergence can also be caused by numerical problems in the algorithm. Thus the limit-load-factor as determined by the βAnalyze Nonlinear WIPβ-component constitutes only a lower limit estimation.