Karamba3D v1.3.3
English θ‹±ζ–‡
English θ‹±ζ–‡
  • Welcome to Karamba3D
  • 1: Introduction
    • 1.1: Installation
    • 1.2: Licenses
      • 1.2.1: Cloud Licenses
      • 1.2.2: Network Licenses
        • 1.2.2.1: Network license (archived)
      • 1.2.3: Temporary Licenses
      • 1.2.4: Standalone Licenses
  • 2: Getting Started
    • 2: Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set πŸ”·
      • 3.1.14: Orientate Element
      • 3.1.15: Select Element
      • 3.1.16: Support
    • 3.2: Load
      • 3.2.1: Loads
      • 3.2.2: Disassemble Mesh Load
      • 3.2.3: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section πŸ”·
      • 3.3.5: Beam-Joint Agent πŸ”·
      • 3.3.6: Beam-Joints πŸ”·
      • 3.3.7: Eccentricity on Beam and Cross Section πŸ”·
      • 3.3.8: Modify Cross Section πŸ”·
      • 3.3.9: Cross Section Range Selector
      • 3.3.10: Cross Section Selector
      • 3.3.11: Cross Section Matcher
      • 3.3.12: Generate Cross Section Table
      • 3.3.13: Read Cross Section Table from File
    • 3.4: Material
      • 3.4.1: Material Properties
      • 3.4.2: Material Selection
      • 3.4.3: Read Material Table from File
      • 3.4.4: Disassemble Material πŸ”·
    • 3.5: Algorithms
      • 3.5.1: Analyze
      • 3.5.2: AnalyzeThII πŸ”·
      • 3.5.3: Analyze Nonlinear WIP
      • 3.5.4: Large Deformation Analysis
      • 3.5.5: Buckling Modes πŸ”·
      • 3.5.6: Eigen Modes
      • 3.5.7: Natural Vibrations
      • 3.5.8: Optimize Cross Section πŸ”·
      • 3.5.9: BESO for Beams
      • 3.5.10: BESO for Shells
      • 3.5.11: Optimize Reinforcement πŸ”·
      • 3.5.12: Tension/Compression Eliminator πŸ”·
    • 3.6: Results
      • 3.6.1: ModelView
      • 3.6.2: Deformation-Energy
      • 3.6.3: Nodal Displacements
      • 3.6.4: Principal Strains Approximation
      • 3.6.5: Reaction Forces πŸ”·
      • 3.6.6: Utilization of Elements πŸ”·
      • 3.6.7: BeamView
      • 3.6.8: Beam Displacements πŸ”·
      • 3.6.9: Beam Forces
      • 3.6.10: Resultant Section Forces
      • 3.6.11: ShellView
      • 3.6.12: Line Results on Shells
      • 3.6.13: Result Vectors on Shells
      • 3.6.14: Shell Forces
    • 3.7: Export πŸ”·
      • 3.7.1: Export Model to DStV πŸ”·
    • 3.8 Utilities
      • 3.8.1: Mesh Breps
      • 3.8.2: Closest Points
      • 3.8.3: Closest Points Multi-dimensional
      • 3.8.4: Cull Curves
      • 3.8.5: Detect Collisions
      • 3.8.6: Get Cells from Lines
      • 3.8.7: Line-Line Intersection
      • 3.8.8: Principal States Transformation πŸ”·
      • 3.8.9: Remove Duplicate Lines
      • 3.8.10: Remove Duplicate Points
      • 3.8.11: Simplify Model
      • 3.8.12: Element Felting πŸ”·
      • 3.8.13: Mapper πŸ”·
      • 3.8.14: Interpolate Shape πŸ”·
      • 3.8.15: Connecting Beams with Stitches πŸ”·
      • 3.8.16: User Iso-Lines and Stream-Lines
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. Appendix
  2. A.2: Background information

A.2.5: Natural Vibrations, Eigen Modes and Buckling

The Eigen-modes of a structure describe the shapes to which it can be deformed most easily in ascending order. Due to this the β€œEigen Modes”-component can be used to detect kinematic modes.

An Eigen-mode xβƒ—\vec{x}x is the solution to the matrix-equation C~β‹…xβƒ—=Ξ»β‹…xβƒ—\utilde{C} \cdot \vec{x} = \lambda \cdot \vec{x}C​⋅x=Ξ»β‹…x which is called the special eigen-value problem. Where C~\utilde{C}C​ is a matrix, xβƒ—\vec{x}x a vector and Ξ»\lambdaΞ» a-scalar (that is a number) called eigenvalue. The whole thing does not necessarily involve structures. Eigen-modes and eigenvalues are intrinsic properties of a matrix. When applied to structures then C~\utilde{C}C​ stands for the stiffness-matrix whose number of rows and columns corresponds to the number of degrees of freedom of the structural system. xβƒ—\vec{x}x is an eigen-mode as can be computed with Karamba3D.

Vibration modes xβƒ—\vec{x}x of structures result from the solution of a general Eigenvalue problem. This has the form C~β‹…xβƒ—=Ο‰2β‹…M~β‹…xβƒ—\utilde{C} \cdot \vec{x} = \omega^2 \cdot \utilde{M} \cdot \vec{x}C​⋅x=Ο‰2β‹…M​⋅x. In a structural contextM~\utilde{M}M​is the mass-matrix which represents the effect of inertia. The scalarΟ‰\omegaΟ‰can be used to compute the eigenfrequencyfffof the dynamic system from the equationf=Ο‰/2Ο€f = \omega / 2\pif=Ο‰/2Ο€. In the context of structural dynamics eigen-modes are also called normal-modes or vibration-modes.

The β€œBuckling Modes”-component calculates the factor with which the normal forces NIIN^{II}NII need to be multiplied in order to cause structural instability. The buckling factors are the eigenvalues of the general Eigenvalue problem C~β‹…xβƒ—+Ξ»2β‹…CG~β‹…xβƒ—=0\utilde{C} \cdot \vec{x} + \lambda^2 \cdot \utilde{C_{G}} \cdot \vec{x} = 0C​⋅x+Ξ»2β‹…CG​​⋅x=0. Here C~\utilde{C}C​ is the elastic stiffness matrix and CG~\utilde{C_{G}}CG​​ the geometric stiffness matrix. The latter captures the influence of normal forces NIIN^{II}NII on a structure’s deformation response.

PreviousA.2.4: Hints on Reducing Computation TimeNextA.2.6: Approach Used for Cross Section Optimization

Last updated 4 years ago

Was this helpful?